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Abstract: Knowing the characteristics of sago starch is necessary for the development of sago utilization. The
mean diameter and nanostructure are characteristics of sago starch important for flocculation and dispersion,
useful in printing, manufacturing paper and corrugated cardboard, and other industries. Sago starch granules are
oval and bell shaped, with 37.59 μm of mean diameter in water and 37.73 to 38.27 μm in 0.01, 0.1, and 1 mol L-1

NaClO4 solution, which showed a C-type (mainly A-type (monoclinic) with B-type (hexagonal) as an accessory)
X-ray diffraction pattern. Sago starch showed variable charge, and the surface charge of sago starch granules
ranged from positive to negative with a point of zero charge at pH 6.1 in 0.1 mol L-1 NaClO4 solution. These
results indicate that sago starch had the intermediate dynamics of a point of zero charge as compared to corn (pH
4.7) and potato starches (pH 6.0).
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charges to amylopectin and controls the surface
charge on starch granules and the behavior of water
molecules in the structure of starch. Wongsagonsup et
al. (2005) showed zeta potential on the surface of rice
starch and suggested that the phosphate in rice starch
provided a negative charge and colloidal stability. 

When paper was primarily made of fibers, starches
were traditionally used to impart dry strength and
enhance the surface integrity for improved writing
and printing. Paper and cardboard also have negative
charges due to the cellulose OH group. The negative
surface charges on starch and paper caused the
repulsion of both. Accordingly, the cationic functional
groups, tertiary amines and/or quaternary ammonium
cations, were introduced to starch to make the positive
surface charge (Wang et al., 2009). 

The objective of this study is to elucidate the
surface charge on sago starch and its implication for
multiple utilizations.

Materials and Methods

1.  Sago starch

Sago starch samples were collected in Hilsig, Leyte,

Introduction

The sago palm (Metroxylon sagu Rottb.), grown in
the lowlands of Southeast Asia, is a useful plant that
can accumulate up to 200 kg of starch per palm.
Foods, paper, cardboard, ink, and other goods are
produced from sago starch (Hidaka et al., 2010;
Fukino, 2000). Japan annually imports 20 thousands
ton of sago starch as dusting flour, mainly from
Malaysia and Indonesia (Agriculture and Livestock
Industries Corporation, 2014). Sago starch is oval or
bell shaped with a mean diameter of 31.0 μ m
(Kobayashi, 1993) and a granular size distribution of
two peaks, 15 and 30 μ m in diameter (Hamanishi et
al., 2005). The amylose content in sago starch was 26
%, which is similar to that of corn starch (Takahashi
et al., 1995). The distribution profile of unit-chain
length of debranched sago amylopectin analyzed by
fluorophore-assisted capillary electrophoresis showed
a maximum at degree of polymerization (PD) 11-12
(Srichuwong et al., 2005). Phosphate is an important
starch component of phosphoric esters, such as
amylopectin and phospholipids, in starch granules. In
addition, phosphoric ester gives positive and negative
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5.  Infrared absorption of sago starch

Functional group analysis of sago starch was
carried out using KBr plates with a Fourier Transform
Infrared Spectroscopy Microscope (Jasco IRT-3000),
aperture size 5 x 5 x 1 mm, total number measured
128, with background correction. The sago starch
granule was observed by a CCD monitor type after
setting the sample position and aperture size.

6.  Solid-state 13C-NMR of sago starch

A Jeol Detum ECA/ECX solid-state CP/MAS 13C
NMR spectrometer was operated at a 13C-resonance
frequency of 500 MHz, a spinning rate of 10 kHz, and
a point number of 2048, using scanning numbers 128
and 256, at room temperature.

7.  Chemical properties of sago starch

The pH and phosphate concentrations of sago
starch samples were determined using a pH meter (pH
meter M-13, Horiba) and using a spectrophotometer
(UVmini 1240, Shimadzu) by a molybdenum blue
procedure (Hokkaido Branch of The Chemical
Society of Japan, 1996), respectively. The pH values
and phosphate concentration affect the surface charge
and the behavior of sago starch in solution. 

8.  Surface charge of sago starch

The surface charge of sago starch was determined by
the titration method of Schultheiss and Sparks (1986).
Starch granules were suspended in 0.01 mol L-1

NaClO4 solution and titrated with HClO4 and NaOH
using an automatic titrator (Auto Titrator COM-1600,
K-2000 Stirrer and Buret B-2000, Hiranuma). 

Results and Discussion

1.  Observation of starch appearance

Sago starch granules are oval or polygonally
shaped with a number of truncated granules
(Takahashi et al., 1995; Karim et al., 2008). Figure 1
shows sago starch granules under a microscope from
our experiments. Sago starch samples were oval and
bell shaped, which corresponded to the results of

Philippines, in 2009 (Okazaki et al., 2013). Sago starch
grains were extracted from the pith pulp by washing
with water after grating. Corn (Kosakai Pharmaceutical
Co.) and potato starches (Miyazawa Pharmaceutical
Co.) certified by The Japanese Pharmacopoeia were
used as references.

2.  Observation of starch appearance

Sago starch samples dispersed in water and air-
dried sago starch samples were observed by an optical
microscope (MT 9300, Meiji Techno) and a scanning
electron microscope (Miniscope TM-1000, Hitachi),
respectively.

3.  X-ray diffraction pattern and crystalline 

properties of sago starch

The X-ray diffraction pattern of sago starch samples
was obtained by an X-ray diffractometer (MiniFlex,
Rigaku). The measurement conditions are as follows:
Cu tube, Ni filter, 30 kV, 15 mA, operation angle 0 to
45 degree for 2 θ. The crystalline index of sago starch
was calculated by the following equation:

Crystalline index = (peak height3b / FWHM3b +
peak height4a / FWHM4a),(1) FWHM: full width at
half maximum

which was referred to by Katsumi et al. (2014). 

4.  Particle-size distribution of sago starch

The particle-size distributions of sago starch
samples after sonication for 10 seconds at 150 W
were determined using the Coulter Principle, also
known as the Electrical Sensing Zone (Multisizer 4,
Beckman Coulter) in water, which provided the starch
particle-size distribution in number and volume, and
using laser diffraction and light scattering methods
(LS 13 320, Beckman Coulter) in 0.01, 0.1, and 1 mol
L-1 NaClO4. Particle-size distribution was determined
using 100 mg in 125 mL for Multisizer 4 and 100 mg
in 100 mL for LS 13 320. 

S. Nishiyama et al.
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Fig. 1. Sago starch grains under polarized microscope 
Bar shows 50 μm.

 
           

            
 
 
 
 
 
 
 
 
 
 
 
 

 

        
 
 
 
 
 
 
 
 
 
 
 
 

 

        
 
 
 
 
 
 
 
 
 
 
 
 

 

        
 
 
 
 
 
 
 
 
 
 
 
 

 

        
 
 
 
 
 
 
 
 
 
 
 
 

 

        
 
 
 
 
 
 
 
 
 
 
 
 

 

        
 
 
 
 
 
 
 
 
 
 
 
 

 

        
 
 
 
 
 
 
 
 
 
 
 
 

 

        
 
 
 
 
 
 
 
 
 
 
 
 

 

        
 
 
 
 
 
 
 
 
 
 
 
 

 

        
 
 
 
 
 
 
 
 
 
 
 
 

 

        
 
 
 
 
 
 
 
 
 
 
 
 

 

        
 
 
 
 
 
 
 
 
 
 
 
 

           
 

        
 
 
 
 
 
 
 
 
 
 
 
 

    
         

 

        
 
 
 
 
 
 
 
 
 
 
 
 

         
 

        
 
 
 
 
 
 
 
 
 
 
 
 

         Fig. 2. Electron microscope image of corn, potato, and sago
starches
Bar shows 50 μm.
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Fig. 3. Particle-size distribution of corn, potato, and sago 
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as a C type, containing mainly A-type and B-type as an
accessory. Corn and potato starches gave typical A- and
B-type X-ray diffraction patterns. The crystalline index
of sago starch was 610 (Table 1), calculated by equation
(1) (Katsumi et al., 2014). These samples were the same
as those of Katsumi et al. (2014) and were different
specimens from the same samples.

4.  Infrared absorption 

Infrared absorption spectra of sago starches shown in
Fig. 5 exhibit the O-H stretching vibration of water
molecules and the O-H of starch at 3600–3200 cm-1,
aliphatic C-H stretching vibration at 3100–2800 cm-1,
OH bending vibration at 1600 cm-1, and aliphatic C-H
vending vibration at 1500–1300 cm-1; absorption at
1200–1000 cm-1 was attributed to the C-O bond-
stretching vibration of the anhydroglucose units (Wang
et al., 2009). Corn and potato starches showed infrared
absorption spectra similar to that of sago starch. 

Karim et al. (2008). Kawagoe (2013) suggested that
the stroma developed the septum-like structure in an
amyloplast and finally produced bell shapes. The sago
starch granules exhibited a Maltese cross under
crossed nicols, indicating the presence of the
crystalline structure of amylose and amylopectin.
Figure 2 shows the appearance of corn, potato, and
sago starch granules under a scanning electron
microscope. Sago starch clearly has a bell shape.

2.  Particle-size distribution of sago starch

The mean particle size of sago (8 to 240 μ m) was
37.59 μ m with a standard deviation of ± 11.0 μ m and
29.3 % for the coefficient of variation (Fig. 3), which
was relatively larger than the result of Kobayashi
(1993). The distribution of the sago starch grain size
showed the normal distribution with the tailing of
small granules. Corn and potato starches were
characterized by the bimodal size distribution with
mean particle sizes of 14.76 μ m and 23.70 μ m,
respectively, which were smaller mean particle sizes
than that of sago starch. Lim et al. (1992) showed that
the mean particle sizes of corn and potato starches
were 14.3 μ m and 35.0 μ m, respectively. The potato
starch (permitted under Japanese pharmacopoeia)
used in our experiment was smaller than that used by
Lim et al. (1992). 

3.  X-ray diffraction pattern and crystalline 

properties of sago starch

The X-ray diffraction pattern of sago starch (Fig. 4)
indicates peaks at around 5.6, 17, 18, and 23 degrees,
corresponding to 1.6,
0.52, 0.49, and 0.39 nm,
respectively, which are
classified as CA starches
(Cai et al., 2014), a
mixture of A- and B-
types of starches. This is
similar to the results of
Okazaki et al. (2008).
Sago starch is classified

S. Nishiyama et al.

 
           

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

           
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

         
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

         
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

         Fig. 4. X-ray diffraction pattern of corn, potato, and sago 
starches

Table 1. Chemical properties of sago starch
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5.  Solid-state 13C-NMR

Solid-state 13C-NMR spectra of sago starch
granules show the resonance at around 102, 85, 80 to
78, and 70 ppm (Fig. 6). The C1 site of individual
glucose units in sago starch provided the resonance at
103, 102 and 100 ppm. The C4 site gave 85 ppm.
Eighty to 78 ppm was assigned to the C2, C3, and C5

sites. The C6 site gave 70 ppm (Gidley and Bociek,
1985). The A-type starch (corn starch) structure
exhibited three peaks at 103, 102 and 100 ppm. There
was no significant difference in solid-state 13C-NMR
spectra between corn and sago starches. 

6.  Surface charge of sago starch

The surface charge of sago starch shown in the 0.1
mol L-1 NaClO4 (Fig. 7) was derived from phosphoric
ester; 60 to 70 % of total phosphate was present at C6
and 30 % at C3 of the glucose residue (Misaki and

Surface charge on sago starch granules

Fig. 5. Infrared spectrum of corn, potato, and sago starches

Fig. 6. 13C-NMR spectra of corn, potato, and sago starches Fig. 7. Surface charges of corn, potato, and sago starch 
granules
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materials in the range of above pH 6. Sago starch
granules themselves show positive charges below pH
6. Multiple utilizations will be proposed, based on the
electrochemical properties of sago starch. 
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